Histopathologic Study of Antiestrogenic Anticancer Nolvadex Induced Liver Damage in Rats and Vitamins Ameliorative Effect

Fatma A. Morsy, Amina Gamal el-Din, Nermeen M. Shaffie and Manal A. Badawi

Department of Pathology, National Research Center, Dokki, Cairo, 12622, Egypt
hassaneinamina@yahoo.com

ABSTRACT: This study was designed to evaluate the effects of antiestrogenic anticancer Nolvadex (used for breast cancer treatment) on rat liver and the possible protective effects of vitamin C and/or E. Material and methods: A total of 140 adult female albino rats were used; divided into seven groups; each containing 20 rats: First group: as control. Second group: orally daily dosed with Nolvadex 20 mg/kg b. w. for three weeks. Third group: orally given vitamin C (0.02 g/100 g b wt), 15 min before daily Nolvadex administration. Fourth group: given vitamin E (120 mg/Kg b.w), 15 min prior to daily Nolvadex administration. The fifth group was given combination of the two vitamins C & E (0.02 g/100 g b.w.) and (120 mg/kg b.w.) respectively, 15 min before daily Nolvadex administration. Each of the remaining two groups was daily given vitamin C (0.02 g/100 g b.w.) and/or E (120 mg/kg b.w.) for two weeks. Paraffin sections were used for histopathological, quantitative image analysis DNA ploidy and histochemical studies. Electron microscopy was performed. Results: Histopathological degenerative effects in the form of vacuolar degeneration, fatty changes and hydropic degeneration were noticed in Nolvadex treated rat liver. Karyolysis and karyorrhexis were also seen. Dysplasia and chromatin clumping were observed in scattered hepatocytes together with a decrease in DNA content (hypoploidy) and marked diminution of protein and mucopolysaccharides content. Histopathological, histochemical and ultra structural changes were diminished in rats treated with vitamins C and/or E prior to Nolvadex. Conclusion: The treatment of rats with vitamins C and/or E prior to Nolvadex resulted in amelioration of the histopathological, histochemical and ultrastructural changes in liver.

Key words: Histopathology – antiestrogenic – anticancer- Nolvadex – liver – rat – Vitamins

1. Introduction

Breast cancer remains the most common malignancy in women world wide. Estrogen levels appear to be associated with an increased risk for the development of breast cancer (Lo. and Vogel 2004). In 1998 the National Surgical Adjuvant Breast and Bowel Project (NSABP) demonstrated that Nolvadex treatment reduced the incidence of both invasive and non-invasive breast cancer in population at high risk for disease (Tan- Chiu et al., 2003).

Tamoxifen (TAM), a non steroidal antiestrogen is used as a chemotherapeutic and chemopreventive agent for breast cancer (Goss and Stresses-Weipple, 2004). Tamoxifen is a nonsteroidal triphenylethyl compound that belongs to a class of selective estrogen receptor modulators (SERMs), binds to estrogen receptors (ERs) and elicits estrogen agonist or antagonistic responses, depending on the target tissue. Its estrogen antagonistic properties have made Nolvadex an important treatment modality for patients with breast cancer, especially those whose tumors are positive for ERs. Dray et al., 2000 reported a case of non-alcoholic steatohepatitis with cirrhosis in a woman receiving tamoxifen as adjuvant treatment for breast cancer. Nolvadex has been used as an agent for the treatment and prevention of breast cancer. However, long-term treatment of Nolvadex in women increases the risk of the developing endometrial cancer. The secondary cancer may be due to the genotoxicity of TAM (Kim et al., 2006). Nolvadex -induced non-alcoholic steatohepatitis (NASH) may increase the demand on oncologists, not only with regard to screening for diabetes, but also for the suggested link of NASH with high incidence of coronary heart disease (Osman et al., 2007). The incidence of toremifene-induced fatty liver was significantly lower than that induced by tamoxifen. Accordingly, in terms of fatty liver and NASH, toremifene is considered to be more appropriate agent than Nolvadex. (Hamada et al., 2000).

Nolvadex is liver carcinogenic in rats and has been associated with an increased risk of endometrial cancer in women (Curtis et al., 2004). Furthermore Nolvadex use has been associated with a 35% decrease in incidence of osteoporotic bone fractures (Decensi et al., 1998). In mice, TAM produced proliferative lesions in the oviduct and uterus (Srinivas et al., 2004) followed by uterine carcinoma (Newboid et al., 1997).

Nolvadex affects some types of visual pathway (Eisner et al., 2004). Woman taking Nolvadex suffer
from damage of retina and corneal opacities. These changes may have no immediate effect on visual acuity, but may predispose the eye to latter problems including cataracts (Epstein et al., 1997). Nolvadex induces menstrual irregularities in premenopausal woman. Amenorrhea (absence of menstrual cycle) often results and can be permanent (Sellman, 1998). Nolvadex can induce multinucleated giant cells and germinal epithelial sloughing, seminiferous tubules distortion and these changes are detrimental to male fertility (Dsooua, 2003).

Nolvadex and its metabolites, 4-hydroxytamoxifen (4OH-TAM), N-desmethyltamoxifen (DMT) and 4-OH-N-desmethyltamoxifen (endoxifen) exhibit antiestrogenic activities by competitively inhibiting the binding of potent agonists to the estrogen receptor (ER), thus antagonizing their proliferative effects (Johnson et al., 2004). Despite the high therapeutic index of TAM for breast cancer, there are concerns regarding the increased occurrence of uterine cancer as early as 2 years after initiating treatment (Fisher, 1994). Nolvadex is classified as a selective estrogen receptor modulator (SERM) as a result of its differential effects in breast and uterine tissues. A number of factors influence the specificity and efficacy of SERM-bound, ER-mediated gene expression, and the subsequent physiological effects (Fong et al., 2007).

Nolvadex has demonstrated genotoxic activity in the rat liver causing DNA adducts (Divi et al., 2001) unscheduled DNA synthesis, hepatic aneuploidy and mitotic spindle disruption (Phillips, 2001). For the formation of DNA adducts, metabolic activation of tamoxifen is indispensable; the metabolites α-hydroxytamoxifen (Beland et al, 1999) and its O-sulfate (Shibutani et al, 1998) are characterized as proximate and ultimate carcinogens, respectively. On the other hand, major metabolites such as N-desmethyltamoxifen, tamoxifen N-oxide and 4-hydroxytamoxifen are generally characterized as detoxification forms, although the further metabolites, α- hydroxyl forms of the N-desmethyltamoxifen and tamoxifen N-oxide, are able to produce the DNA adducts (Umamoto et al, 2000). Long term administration of Nolvadexinduced hepatoproliferative lesions and hepatocellular tumors in rats (Hirsimaki et al., 1993). In the stage before the formation of hyperplastic nodules in the liver, the genes of several hepatic enzymes responsible for not only detoxification but also activation of Nolvadex were activated and that in the later stage (in the nodules), the gene activation of detoxification enzymes was selectively maintained, while that of activation enzymes was suppressed. Thus, the overall change in the gene expression of the Nolvadex-metabolizing enzymes by Nolvadex treatment appears to be reasonable for the formation and growth of the hepatic hyperplastic nodules, because the increase in detoxification enzymes in the later stage would be expected to confer tamoxifen resistance to the induced nodules (Kasahara et al., 2002).

One of the proposed pathways for the metabolic activation of Nolvadex involves oxidation to 4-hydroxy tamoxifen, which may further oxidize to electrophilic Quinone methide (Costa et al., 2001). Nolvadex is well tolerated but causes steatosis in 43% of recipients (Nishino et al., 2003). Steatohepatitis can develop, particularly in overweight women (Bruno et al., 2005), and can lead to cirrhosis (Oien et al., 1999). Nolvadex administration decreases fatty acid synthase (FAS) expression in rat liver (Lelliott et al., 2005), and tamoxifen both uncouples and inhibits mitochondrial respiration (Larosche et al., 2007).

Antioxidants have been reported to play a significant role in protection against lipid peroxidation (Steenvoorden and Henegouwen, 1999). Some investigators reported that antioxidants inhibit chemical carcinogenesis when the antioxidants are administered either prior or with carcinogen (Ames, 1983). Vitamin C (ascorbic acid) has a considerable antioxidant activity: it scavenges reactive oxygen species and may, thereby, prevent oxidative damage to the important biological macromolecules, such as DNA, proteins, and lipids (Konopacka, 2004). Ascorbic acid (vitamin C) exerts protective role against acute ultraviolet B-rays (Sunburn cell formation) (Meves et al, 2002), organophosphorous pesticides (Kurata et al., 1993), and could reduce aflatoxin induced liver cancer (Yu et al., 1994). Moreover vitamin C abolishes chromosome damage resulted from the effect of toxic substances (Trommer et al., 2002), and help to protect the body against pollutants (Masaki et al., 2000).

Because vitamin C is a biological reducing agent, it is also linked to preventive of degenerative diseases such as cataracts, certain cancer and cardiovascular disease (Barros et al., 2004 and Wang & sun, 2004). Increased vitamin C intake could possibly reduce and prevent nephrototoxic effect (Nagyova et al., 1994). It assists in the prevention of blood clotting and bruising; it strengthens the walls of the capillaries (Tousoulis et al., 2003) and it is also needed for healthy gum (Ambros et al., 1998). Vitamin C helps to reduce cholesterol levels, high blood pressure and preventing atherosclerosis (Napoli et al., 2004 and Zureik et al., 2004). It protects susceptible cells from genotoxicity associated with antiestrogen metabolite-4- hydroxy tamoxifen (4-OH tam) (Sharma and Slocum, 1999), and inhibit DNA adduct induced by tamoxifen (Sieren et al., 2001 and Sharma et al., 2003).

Vitamin E (alpha tocopherol) is the naturally occurring lipid soluble antioxidant (Butterfield et al., 2003).
Histopathological, histochemical and ultrastructural studies

2. Material and Methods

140 female albino rats weighting 130-160g were used in this study. The animals were divided into seven groups. Each group contained 20 rats.

Group (1): was kept as control.

Group (2): was given Nolvadex daily for two weeks at dose level of 20mg/kg b.w.

Group (3): was given vitamin C only at dose level of 0.01g/100g b.w. by stomach tube for two weeks.

Group (4) was given vitamin E only 0.01g/100g b.w. by stomach tube for two weeks.

Group (5) was given vitamin C at dose level of 20mg/kg b.w.

Group (6) was given vitamin E at dose level of 100mg/kg b.w., 15 min before Nolvadex administration.

Group (7) was given combination of vitamin C at dose level of 0.01g/100g b.w. and vitamin E at dose level of 100mg/kg b.w., 15 min before Nolvadex administration for two weeks.

Histopathological and histochemical studies:

The liver of different groups were removed and fixed in 10% formal saline. Paraffin sections 5 μm thick were stained with haematoxylin and eosin (Drury and Wallington, 1980) and Masson trichrome stain to demonstrate the collagen fibers (Masson, 1929). All sections were investigated by the light microscope.

DNA Ploidy studies:

Further sections were stained for DNA (Feulgen and Rosenbeck, 1942) and counterstained with Light Green. DNA analysis was performed by lecia Qwin 500 image cytomery in the department of pathology, National Research Center. For each section (100-120 cells) were randomly measured. The threshold values were defined by measuring control cells. The results are presented as histograms and tables which demonstrate the percentage of the diploid cells (2C), the triploid cells (3C), the tetraploid cells (4C) and the aneuploid cells (>5C). The DNA histogram classified according to Danque et al., (1993). Protein stain (Mazia et al., 1953) and mucopolysaccharids stain (Mac-Manus and Cason, 1950) were also performed.

The ultrastructural studies:

Sample processing for electron microscopy together with examining the thin sections and getting the electron micrographs was done in the Electron Microscope Unit, Institute of Ophthalmology. Small pieces of liver, about 1mm3 in size were prepared.

Thin sections 60-90 nm thick were prepared by using ultra cats/ FCS; the thin sections were mounted on copper grids, stained with uranyl acetate and lead citrate (Watson, 1958) and finally examined with transmission JEM-100x IL electron microscope. Photographs using Kodak films and photographic paper were taken and examined. Further sections were stained for DNA (Feulgen and Rosenbeck, 1942) and counterstained with Light Green. DNA analysis was performed by lecia Qwin 500 image cytomery in the department of pathology, National Research Center. For each section (100-120 cells) were randomly measured. The threshold values were defined by measuring control cells. The results are presented as histograms and tables which demonstrate the percentage of the diploid cells (2C), the triploid cells (3C), the tetraploid cells (4C) and the aneuploid cells (>5C). The DNA histogram classified according to Danque et al., (1993). Protein stain (Mazia et al., 1953) and mucopolysaccharids stain (Mac-Manus and Cason, 1950) were also performed.

3. Results
- Histopathological results:
 The liver of control rats revealed the characteristic hepatic architecture (Fig. 1, A).
 No pathological changes could be noticed in the
liver of rats treated with either vitamin C or vitamin E.

The liver of rats treated with Nolvadex only showed hydropic degeneration, nuclei with variable sizes and dysplastic cells (Fig. 1B). Fatty changes, vacuolar degeneration, mitotic figure and fibrosis were seen (Fig. 1C). Dilation, congestion of blood sinusoid and peripheral chromatin clumping were also observed (Fig. 1D).

Concerning rats treated with vitamin C and Nolvadex in combination for two weeks, examination of liver sections showed marked diminution of hydropic degeneration, fatty changes and mitotic figure. No fibrosis and no chromatin clumping were noticed. While some hepatocytes still showed hypertrophy, others showed signs of degeneration in the form of karyolysis and karyorrhexis. The kupffer cells showed mild hypertrophy (Fig. 1E).

The rats treated with vitamin E and Nolvadex in combination, showed some protective effects as compared to the group of rats subjected to Nolvadex only. Examination of liver sections showed moderate hypertrophy of kupffer cells. Red blood cells are seen in the blood sinusoids. Focal area of necrosis was also noticed. The liver of rats subjected to combination of vitamin C and vitamin E prior to administration of Nolvadex showed some histological changes, but these changes were somewhat less than those of rats treated with Nolvadex only. Examination of liver sections showed focal necrosis and a number of binucleated cells (Fig. 1F).

Examination of control liver sections showed normal distribution of collagen, which showed small amount of wavy fibrils (Fig. 2A). Treated group with Nolvadex showed collagen fibrils that occurred as wavy fibrils either singly or fused together in dense bundles (Fig. 2B). The liver of rats subjected to vitamin C and / or vitamin E prior to administration of Nolvadex showed improvement in collagen deposition and connective tissue fibers as compared to liver of rats treated with Nolvadex only (Fig. 2C).

DNA Ploidy results:

DNA content in all the studied groups:

In the present study, the Qwine 500 image analyzer was used to evaluate the DNA content. The image analysis system automatically express the DNA content of each individual cell measured then gave the percentage of each cell out of the total number of cells examined. Also, it classifies the cells into four groups; diploid (2C), proliferating cells (3C), tetraploid (4C) and aneuploid cells (>5C). The proliferating cells were further classified according to Lee et al. (1999) into; (<10%) low proliferation index, (10-20%) medium proliferation index and (>20%) high proliferation index.

Normal distribution of DNA content in the liver of the control group showed that 20.18 % of the examined cells contained DNA (<1.5C), 65.13% of the examined cells contained diploid DNA value (2C), 12.84% of the examined cells contained (3C) DNA value (medium Proliferation Index) and 1.83% of the examined cells at (4C) area (Histogram 1). The group treated with Nolvadex showed that 93.54% of the examined cells contained DNA (<1.5C) this means decrease in DNA content (hypoploidy) compared to the control. (Histogram 2).

In the present work the treatment of rats with Nolvadex along with vitamin C showed that 31.63% of the examined cells contained DNA (<1.5C), 61.22% of the examined cells contained diploid DNA value (2C), 6.12% of the examined cells contained (3C) DNA value (low Proliferation Index) and 1.02% of the examined cells at (4C) area (Histogram 3).

The group treated with Nolvadex along with combination of vitamin C and E showed that 9.90% of the examined cells contained DNA (<1.5C), 86.13% of the examined cells contained diploid DNA value (2C), 3.96% of the examined cells contained (3C) DNA value (low Proliferation Index). The group treated with Nolvadex along with combination of vitamin C and E showed marked diminution in the cytoplasm of hepatocytes and staniability was mostly diffused. Slight increase in protein content was noticed in the case of rats subjected to vitamin C in combination with Nolvadex as compared to liver of rats subjected to Nolvadex only. Moderate increase in protein content in the cytoplasm of hepatocytes was also recorded in the case of rats treated with vitamin E in combination with Nolvadex as compared to rats subjected to Nolvadex only. The pretreatment of rats with combination of vitamins (vitamin C and vitamin E) along with Nolvadex showed marked increase in protein content in the cytoplasm of hepatocytes.

Examination of control liver sections stained with periodic acid Schiff’s (PAS) showed mucopolysaccharide granules in the cytoplasm of hepatocytes; the peripheral zonal cells showed higher
mucopolysaccharide content than the central zonal cells (Fig.3, A). Daily treatment of rats with tamoxifen only for two weeks induced marked decrease in stainability of PAS +ve materials (Fig.3 B). Daily administration of vitamin E in combination with tamoxifen showed moderate increase in mucopolysaccharides content in the cytoplasm of hepatocytes and mild increase in mucopolysaccharides content could be noticed in the case of rats subjected to vitamin E and tamoxifen as compared to rats subjected to Nolvadex only (Fig. 3 C). Co administration of vitamins (vitamin C and vitamin E) in combination with Nolvadex showed marked generalized increase in mucopolysaccharides content in the cytoplasm of hepatocytes (Fig. 3 D).

Electron microscopic results:
Figure (4 A) showed electron micrograph of control liver cells. Hepatocytes of rats treated with Nolvadex only show areas of cytoplasmic dissolution, partial clumping of nuclear chromatin and corrugated nuclear membranes. Mitochondria were swollen with dense matrix (Fig.4 B). Endoplasmic reticulum dilated cisternae with no obvious attached ribosomes (Fig.4 C). The treatment of rats with vitamin C or vitamin E showed improvement in the ultrastructural changes in the form of diminution of cytoplasmic dissolution and restoration of nuclear normal shape (Fig. 4 D).

Figure (1): (A) Section in the liver of control rat showing normal histological structure of hepatic lobules and central vein (Hx.&E. X 200). (B) Section of the liver of a rat treated with Nolvadex showing hydropic degeneration (1), variable sized nuclei (2). Also seen, many pyknotic nuclei and some hepatocytes are devoid of nuclei (Hx.&E. X400). (C) Section of the liver of the same group showing lymphocytic infiltration (arrow), fatty changes, vacuolar degeneration (arrow head) and mitotic figures (yellow arrow head) (Hx.&E. X 200). (D) Section of the liver of a rat treated with Nolvadex showing dilation and congestion of blood sinusoids (arrow) and peripheral chromatin clumping (arrow head) (Hx.&E. X400). (E) Section in the liver of a rat treated with vitamin C along with Nolvadex showing no fibrosis, no fatty changes and no vacuolar degeneration. Karyolysis (black arrow head), karyorrhexis (yellow arrow head) & mild hypertrophy of Kupffer cells (arrow) were noticed. The same results were obtained with Vitamin E along with Nolvadex (Hx.&E. X400). (F) Section of the liver of a rat treated with Nolvadex along with vitamin C and vitamin E showing scattered binucleated cells (arrows). (Hx & E X 400).
Figure 2: Section of the liver of a rat showing collagen (A): control. (B): treated group with Nolvadex showing collagen fibrils occurred as wavy fibrils either singly or fused together in dense bundles especially in and around the portal area, around the central vein and in-between hepatocytes. (C): treated group with Nolvadex along with vitamin C showing mild amount of fibrous tissue in the portal area. (Masson trichrome stain x 200).

Figure (3): Section of the liver of a rat showing PAS+ ve materials in the cytoplasm of hepatocytes (A) control. (B): Treated with Nolvadex: showing decreased stainability of PAS + ve materials. (C): Treated with vitamin E along with Nolvadex showing mild improvement in PAS +ve materials. The same results were obtained from the group of rats treated with Vitamin C along with Nolvadex. (D): Treated with Nolvadex along with vitamin C and vitamin E showing increased PAS+ ve materials. (PAS reaction x 400).
Fig. 4: (A): Photoelectron micrograph of a control adult albino rat (x8000), (B): Electron micrograph of hepatocytes treated with Nolvadex showing swollen mitochondria with dense matrix, partial clumping of nuclear chromatine (arrow) and nuclear shrinkage (arrow head) (x6000). (C): Another field of electron micrograph of hepatocytes treated with Nolvadex showing dilatation of endoplasmic reticulum with no obvious ribosomes (arrow head) the nuclear membrane is corrugated. (arrow) (x 10000). (D): treated group with a combination of vitamin C & E along with Nolvadex showing well-defined nucleolus (arrow) and nuclear envelope (arrow head). Also seen normal-shaped rough endoplasmic reticulum (RE), although mitochondria (M) are still dilated. (x 6000).

Histogram (1): DNA Ploidy of the Control Rat Liver

Histogram (2) & Table (2): DNA Ploidy of Rat Liver Treated with Tamoxifen.

Histogram (2): DNA Ploidy of Rat Liver Treated with Nolvadex.

Histogram (3): DNA Ploidy of Rat Liver Treated with Nolvadex along with Vitamin C.
4. Discussion

Nolvadex is a triphenyl ethylene derivative commonly used in the treatment of breast cancer (Kennel et al., 2003 and Mati & Chen, 2003). Nolvadex is known to have varied biological effects ranging from complete estrogen antagonism to pure estrogen agonism depending upon its concentrations, the sex of animals and target organ (Williams, 1984). In humans and rats Nolvadex is predominantly antiestrogenic with residual estrogenic activities (Furr and Jordan, 1984).

Rat liver is an organ with especial sensitivity of developing tumors after exposure to many chemicals and drugs (Maronpot et al., 1995). The rat at which the liver tumors develop is known to be strongly influenced by Nolvadex's promoting effect on hepatocyte proliferation where sustained proliferation has also been associated with chronic cell death (Carthew et al., 1996).

The microscopical appearance of liver in rats receiving 20mg/kg b.w. of Nolvadex by an oral route for two weeks was characterized by vacuolar degeneration and hydropic degeneration. Results of this work go in agreement with Hirsimaki et al., (1993) who noticed that the treatment of rats with Nolvadex at dose level of 45 mg/kg b.w. for two weeks caused vacuolar degeneration in the liver of rats. In controversy Kasahara et al., (2002) stated that no pathological changes could be noticed in the liver of rats treated with Nolvadex at dose level of 20 mg/kg b.w. for two weeks. Pathological altered cell foci and placental form of glutathione s-transferase (GST-P) positive foci were observed in the liver after 12 weeks. Treatment for 52 weeks resulted in the formation of liver hyperplastic nodules that strongly expressed GST-P. According to Badawy et al., (2002) the treatment of rabbit with Nolvadex at dose level of 14 mg/kg b.w. daily for 60 days induced histopathological changes in the testis in the form of vacuolar degeneration of spermatogenic cells, atrophied and collapsed seminiferous tubules with asospermia.

Vacuolation observed in the present study may be due expansion of the mitochondrial intermembrane space and extension of the outer mitochondrial membrane (Higgins et al., 2003) consistent with ultrastuctural changes observed in the present study. Vacuolation may be due to disturbance of ionic milieu of the cell with consequent retention of water and sodium leading to cellular swelling (Jaarsma et al., 2001 and Wiedemann et al., 2002).

Nolvadex was associated with higher risk of development of non-alcoholic steatohepatitis only in overweight and obese women (Bruno et al., 2005). Adjuvant Nolvadex increases the incidence of fatty liver in patients with breast cancer (Liu et al., 2006). In the present work fatty changes were observed in the liver after treatment of rats with Nolvadex only. Fatty change observed in the present work may be due to damage in rough endoplasmic reticulum confirmed by electron microscopic changes observed in the present work, impaired protein synthesis and inhibition of lipoprotein manufacture. The latter is involved in the transport to hepatocyte triglycerides to extracellular tissue and its inhibition results in accumulation of fat in the cytoplasm (Deboyser et al., 1989). According to Marzouk (1995) mitochondria are known to contain many of the enzymes necessary for the metabolism of triglycerides (i.e. fatty acid oxidases). This leads to another explanation that the fatty changes observed in the present work may be due to mitochondrial damage.

Nolvadex decreases hepatic triglyceride secretion, and it accumulates electrophoretically in mitochondria, where it impairs oxidation and respiration. Nolvadex also inhibits topoisoenzymes and mitochondrial DNA synthesis and progressively depletes hepatic mitochondrial DNA in vivo. These combined effects could decrease fat removal from the liver, thus causing hepatic steatosis despite the secondary down-regulation of hepatic fatty acid synthase expression (Larosche et al; 2007).

In the present work the treatment of rats with Nolvadex only induced foci of necrosis, signs of degenerationation in the form of, karyolysis, karyorhexis and fibrosis of hepatocytes. Displastic cells could be noticed. These results were in agreement with Hirsimaki et al. (1993) they noticed that the treatment of rats with Nolvadex only induced area of hepatic necrosis and apoptosis. In controversy Coe et al., (1992) reported that subcutaneous injection of Nolvadex alone at dose level of 0.1mg (5mg) did not cause degenerative changes or neoplastic lesions in Armenian hasmster. Also Sauvez et al. (1999) they found that the treatment of rats with Nolvadex induced biliary proliferation and peribiliary fibrosis and degeneration of hepatocytes. Coinciding with Smith et al. (2000), they reported that Nolvadex revealed tissue damage and carcinogenic changes in rats by an oral route.

The hepatic fibrosis observed in the present study may be due to increased level of malondialdehyde (MDA) and decreased production of superoxide dismutase (SOD) and glutathione peroxidase in the liver cells. Oxidative stress plays a role in the development of hepatic fibrosis and degeneration (Duthie et al., 1995). According to Hu et al. (2003) one of the proposed pathways for the metabolic activation of Nolvadex involves oxidation to 4-hydroxytamoxifen which may further oxidized to an electrophilic quinone methide and may affect cytochrome P-450. However, Badawy et al. (2002) they reported that the administration of Nolvadex caused the production of reactive oxygen species...
(ROS) which can damage the cellular elements. Oxidative modifications of DNA, protein and lipid by ROS play a role in ageing and disease.

In the present work the pathological changes observed in the liver of rats due to oral route of Nolvadex may be due to lipid peroxidation and free radicals. Free radical may propagate damage in the endoplasmic reticulum and oxidation of membrane component of the liver cells consistent with ultrastructural changes observed in the present work. Oxidation has been shown to be associated with apoptosis (Programmed cell death) (Mohan et al., 2003). The effects of Nolvadex may be neutralized by radical scavenger antioxidants such as vitamin C and/or vitamin E (Babu et al., 2000).

In the present work the oral administration of vitamin C prior to administration of Nolvadex showed some improvement in pathological changes in comparison with group of rats subjected to Nolvadex only. According to Ökolie and Iroanya (2003) the supplementation of vitamin C led to marked reduction of histopathological degeneration in tissues by toxic agents. Vitamin c exerted antioxidant action and free radical scavenger (Barros et al., 2004). Coinciding with Sharma and Slocum (1999), they reported that vitamin C adverse some pathological changes induced in liver of rats treated with Nolvadex. According to Sharma et al., (2003) ascorbic acid reduced the level of alpha hydroxytamoxifen substantially (68.9%) when exposure of endometrial explanted culture to 100 micro M Nolvadex and 1mM ascorbic acid.

The treatment of rats with vitamin E conditioned the adverse effect of Nolvadex in liver of rats. According to Custudio et al. (1994) oral administration of antioxidant such as vitamin E has a high protective capacity of vitamin against lipid peroxidation. Also Inal and Kahraman (2000) they reported that vitamin E exerted the antioxidant action and can interfer with the production of reactive oxygen species and other reactive oxygen species scavengers such as glutathione peroxidase, superoxide dismutase, xanthine and increase glutathione in cells.

In the present work the treatment of rats with vitamin E prior to administration of Nolvadex showed marked diminution of vacuolar degeneration and fatty changes. Crewe et al. (2002) found that the vitamin E may be possible therapeutic agent with potential applications against pathological states due to reactive oxygen species. Coinciding with Babu et al. (2000) they demonstrated that vitamin E adverse some pathological changes induced in tissue of rats treated with Nolvadex Vitamin E also decreased dimethyl valeronitrile induced phospholipid peroxidation. Also Mohan et al. (2003) reported that the pretreatment of rats with vitamin E inhibited apoptosis by acting a quite upstream in the apoptosis cascade at the mitochondrial level as well as down stream at the caspase.

In the present work the treatment of rats with combination of the two vitamins (vitamin C and vitamin E) before an oral route of Nolvadex showed more improvement in the pathological changes. Results of this work go in agreement with Prasad et al. (1994) who reported that a mixture of vitamins (vitamin C and vitamin E) were more effective in reducing the effect of Nolvadex on tissue damage and they were more effective in reducing growth of human melanoma cells. In the previous studies of Babu et al. (2000) showed that the combined effect of Nolvadex, vitamin C and vitamin E encumber the abnormalities investigated by Nolvadex.

The measurement of DNA ploidy has the advantages of being precise, rapid and quantitative, (Filipe et al., 1991). Image cytometry for DNA quantification has become an established technique in the field of analytical cellular pathology, used as an important parameter providing significant information about the biological behavior of tumors (Cohen, 1996). Concerning ploidy results, the treatment of rats with Nolvadex only resulted in decreased nuclear DNA content, 93.54% of the examined cells contained DNA <1.5c i.e hypoploidy and low proliferation index. 6.54% of the examined cells contained diploid DNA value. These results go in agreement with (Phillips, 2001 and Cardoso et al. 2003) who reported that, the mechanism by which Nolvadex causes liver cancer in rats is through accumulation of DNA damage, caused by adduct formation between Nolvadex and hepatocytes DNA. According to Süzme et al. (2001) Nolvadex injections induced DNA aneuploidy, but did not stimulate proliferation in the liver as estimated by S-phase fraction. Friedlander et al. (1984) found that the normal human somatic cell contains 46 chromosomes which is referred diploid (2n), the gametes contain one set of chromosomes (23) referred to as haploid. While a cell with fewer or more than 46 chromosomes is described as hypoploid or hyperploid respectively. Also Umeno et al. (2001) found that DNA adduct is formed when chemical carcinogen or their metabolites bind covalently with DNA. On the other hand Sierens et al. (2001) and Kasahara et al. (2003) found that Nolvadex has demonstrated genotoxic activity in rat liver causing unscheduled DNA synthesis and hepatic aneuploidy. They added that tamoxifen causes hepatic tumors through a genotoxic mechanism. Moreover Dragan et al. (1998) found that the treatment of rats with Nolvadex resulted in a shift of DNA from tetraploid to diploid. Marrero et al. (1996) reported that the cellular DNA content is abnormal at an early stage in dysplasia and may even predate it. Increasing value of abnormal DNA content is related to the severity of dysplasia. Also Carthew et
al. (1997) explained that the endogenous DNA damage was not generated by estrogen receptor mechanisms but by microsomal cytochrome p-450 mediated redox cycling of catechol estrogen.

In the present work the treatment of rats with vitamin C along with Nolvadex showing improvement in DNA content as compared to group of rats treated with Nolvadex only. According to Nefic (2001) vitamin C (ascorbic acid) is an antioxidant that can scavenge free radicals and protect cellular macromolecules, including DNA, from oxidative damage induced by different agents. Some studies indicated that vitamin C is much more than just an antioxidant; it regulates the expression of some genes participating in apoptosis or DNA repair processes (Konopacka, 2004). Also, vitamin C provides high ability to decrease the number of aneuploid DNA value. Tarin et al., (1998) reported that the DNA aneuploid and diploid were highly increased in mouse treated with some toxic agents and decreased DNA aneuploid after administration of vitamin C. They added that mixture of vitamins C and vitamin E induced more improvement in DNA content.

In the present work the treatment of rats with Nolvadex only showed marked diminution in protein content. These results disagreement with Kulesar and Gergely (1991) stated that Nolvadex caused protein synthesis in healthy and in injured liver. These results were in agreement with Gong et al. (1999) who reported that the Nolvadex or 4-hydroxytamoxifen caused decrease in mRNA and protein levels depending on time and dose. Also Divi et al. (2001) noticed that Nolvadex induces the formation of hepatic enzyme altered foci that have lost the capacity to metabolize the drug to DNA binding species. Nolvadex induced modified mitochondrial DNA or Nolvadex modified protein. On the other hand Matin et al. (1987) showed that subcellular fractionation of mouse liver showed that 82% of the antiestrogen binding protein was associated with the rough endoplasmic reticulum where it was confined to the membranous component. The antiestrogen binding protein was also present in smooth endoplasmic reticulum, nuclei and cytosol. High affinity of protein was recorded in tissue of mouse treated with Nolvadex.

In the present work the treatment of rats with vitamin C and/or vitamin E prior to administration of Nolvadex produced more improvement in protein content. These results are in agreement with Sierens et al. (2001) who stated that the antioxidant species may act in vivo to decrease damage of protein content in tissues. However Sharma et al. (2003) noticed that the antioxidants vitamin C & vitamin E play an important role in stimulating intercellular signals indirectly for activation of gene responsible for protein synthesis related to DNA repair.

Results of the present work showed that the oral administration of rats with Nolvadex produced marked diminution in mucopolysaccharides content. Results of this work go in agreement with Kulesar and Gergely (1991) who found that Nolvadex caused moderate glycogen loss in liver lesion. According to Hirota et al. (1993) the amount of smooth endoplasmic reticulum appeared to be increased in some cells after administration of Nolvadex at the dose level of 45 mg/kg at total period of 52 weeks.

Depletion of glycogen that was observed in the present study was most probably consequent to hydropic and fatty degeneration manifested in this work, or due damaging effect of Nolvadex on the cytoplasmic organelles and the associated enzymes. However Poop and Cattley (1991) reported that the decrease in mucopolysaccharides content in tissues may be due to disturbed role of Golgi apparatus which is responsible for synthesis of polysaccharides.

In the present work the treatment of rats with Nolvadex only showed swollen mitochondria with dense matrix. According to Hirota (1997) Nolvadex induced mitochondrial disappearance of cristae. However Hoyta et al. (2000) stated that high concentration of Nolvadex (100micro M) caused mitochondrial depolarization. Also Andreassen et al. (2000) reported that mitochondrial dysfunction can lead to energy deficiency, ionic imbalance, elevated reactive oxygen species (ROS) and oxidative damage. The mitochondrial vacuolation and swelling represent an accelerated form of mitochondrial damage caused by high level of mutant superoxide dismutase accumulation (Wang et al., 2002).

The liver of rats treated with Nolvadex only showed dilated endoplasmic reticulum with no obvious attached ribosomes. According to Hirota (1997) Nolvadex induced damage of granular endoplasmic reticulae. The dilatation of endoplasmic reticulum may be the cause of vacuolation of the cytoplasm observed by light microscope in the liver of rats treated with Nolvadex only. The dilatation of rough endoplasmic reticulum was considered by Robbin et al. (1984) to be reaction to cell injury. Detachment of ribosomes most probably reflected a disturbance in protein synthesis confirmed by histochemical changes observed in the present work. According to Traynor and Hall (1981) the increase of protein catabolism is a major effect of the body’s response to stress.

Conclusion:

Nolvadex treatment induces liver damage that was performed by histopathological, histochemical and ultrastructural changes. These changes may be due to the production of reactive oxygen species (ROS) which could damage the cellular elements. The using
of vitamin C and/or vitamin E ameliorate the harmful effects of Nolvadex. This protection may be due to antioxidant action which can interfere with production of reactive oxygen species scavengers such as glutathione peroxidase, superoxide dismutase, xanthine and increase glutathione in cells.

Correspondence to:
Amina Gamaleldin
National Research Centre
Dokki, Cairo, 12622, Egypt
Phone: +202 3371382/3371 433
Mobile: +2 012 34 32 554
Fax: +202 3370931/33478742
Email: hassaneinamina@yahoo.com

References:

